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1. Motivation 

 
•  A particular class of system with global existence. (Fundamental 

Theorem) 
•  A good approximation to nonlinear system near a known solution. 

(Linearization) 
•   Solution structure and geometric property of the set of whole solutions. 

(Solution Structure and Direct Sum Decomposition)  
•   The theory of linear system is relatively complete except a few remains 

open.  
 

If 0 ( )x x t=  is a particular solution of the following nonlinear systems 

( , )x f t x′ = ,                         (NS) 

where f  is continuously differentiable, then 0 ( )y x x t= −  in (NS) implies 

0 0 0 0( ) ( , ) ( , ( )) ( , ( )) ( , ( ))y x x t f t x f t x t f t y x t f t x t′ ′ ′= − = − = + −  

( ) ( , )A t y t yα= + ,                                         (LN1) 

where 0( ) ( , ( ))fA t t x t
x
∂

=
∂

, ( , ) 0f t y
x
∂

≠
∂

 near 0y = , ( ,0) 0tα =  and ( ,0) 0t
x

α∂
=

∂
. 

It is natural to study the linear system  

( )z A t z′ = ,                         (LN2) 

and relationship between ( )y t  of (LN1) and ( )z t  of (LN2) near 0y = . That is, is 

(LN2) a good approximation of (LN1) near 0y = ? What dose the condition 

( , ) 0f t y
x
∂

≠
∂

 near 0y =  imply? (Hartman-Grobman Theorem) 
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2. Global Existence 
 

Consider 

   )()( thxtAx += , nRx∈ , 

where )(tA  and )(th )(IC∈ , ( , )I a b= ( a = −∞  or b = ∞  is permitted). ⇒   

The following IVP 

)()( thxtAx += , 0 0( )x t x=                    (L1) 

has a local existence and uniqueness by Picard theorem. But the IVP (L1) has a global 
result! 
 

Theorem 6.1 ((Fundamental Theorem) Suppose that )(tA  and )(th )(IC∈ , where 

),( baI = , if 0t I∈ , then the solution of the IVP (L.1) is defined on ),( ba . 

Proof. Since )()()(),( nRICthxtAxtf ×∈+=  satisfies locally Lipschitz, then there 

exists a unique solution 0 0( , , )x t t x  of the IVP (L1) by Picard theorem, defined on 

maxI . If maxI ≠ ),( ba , say max 0[ , )I t ω+
+=  with bω+ < , we show that by 

contradiction.  

Let 0[ , )t t ω+∈ . Then we have  

0
0 0 0 0 0( , , ) { ( ) ( , , ) ( )}

t

t
x t t x x A s x s t x h s ds− = +∫ . 

          ⇒  
0 0

0 0 0 0 0|| ( , , ) || || || || ( ) || || ( , , ) || || ( ) ||
t

t t
x t t x x A s x s t x ds h s ds

ω +≤ + +∫ ∫  

By Gronwall’s inequality, we have 

0 0
0 0 0|| ( , , ) || {|| || || ( ) || } exp( || ( ) || )

t

t t
x t t x x h s ds A s ds

ω +≤ + ⋅∫ ∫  

  
0 0

0{|| || || ( ) || } exp( || ( ) || )
t t

x h s ds A s ds
ω ω+ +≤ + ⋅ < ∞∫ ∫ . 

Thus, 0 0|| ( , , ) ||x t t x  is uniformly bounded for 0 0( , )t x  on maxI + . However, we 

obtain 0 0|| ( , , ) ||x t t x →∞  as t ω −
+→  by the continuation theorem. This is a 

contradiction. It is similar to show the case of max 0( , ]I tω−
−=  with aω− > .   

 
Remark 6.1 Linear system has global solutions. We can regard whole solutions of the 
linear system (F1) as a set just because of global existence.   
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3. Superposition Principle 
 

Theorem 6.2 (Superposition Principle) Suppose that 1( )x t and 2 ( )x t  are solutions 

of 1( ) ( )x A t x h t′ = +  and 2( ) ( )x A t x h t′ = +  respectively. Then 1 1 2 2( ) ( )c x t c x t+  is a 

solution of 1 1 2 2( ) ( ( ) ( ))x A t x c h t c h t′ = + + .  

 
Remark 6.2 From math point of view, superposition principle is quite simple. 
However, it is a characterization of linear systems. Extremely important in practice! 

From control point of view, if we regard ( )h t  as an input and ( )x t  response 

(output), then, any dynamic system satisfies superposition principle is linear. This 
principle can be verified based on experiment without having differential equations.   
 

Corollary 6.1 Suppose that 1( )x t  and 2 ( )x t  are solutions of ( )x A t x′ = . Then 

1 1 2 2( ) ( )c x t c x t+  is a solution of ( )x A t x′ = . 

Proof. Taking 1 2( ) ( ) 0h t h t= ≡  in Theorem 6.2 yields the result.   

 

Corollary 6.2 Suppose that 1( )x t  and 2 ( )x t  are solutions of ( ) ( )x A t x h t′ = +  and 

( )x A t x′ =  respectively. Then 1 2( ) ( )x t x t+  is a solution of ( ) ( )x A t x h t′ = + . 

Proof. Taking 1( ) ( )h t h t= , 2 ( ) 0h t ≡  in Theorem 6.2 yields the result.   

 

Corollary 6.3 Suppose that 1( )x t and 2 ( )x t  are solutions of ( ) ( )x A t x h t′ = + . Then 

1 2( ) ( )x t x t−  is a solution of ( )x A t x′ = . 

Proof. Taking 1 2( ) ( ) ( )h t h t h t= =  in Theorem 6.2 yields the result.   

 
4.  Homogeneous Linear Systems 
 

Consider the homogeneous linear system ( )x A t x′ = . Let Ω  be the set of whole 

solutions of ( )x A t x′ = .  
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Theorem 6.3 Ω  is an n -dimensional vector linear space.   

Proof. For any It ∈0  and nRx ∈0 , there exists a unique solution 0( , )x t x , It ∈ . 

Define a mapping : nT R →Ω  as follows. 

0 0( ) ( , )T x x t x= . 

We first show that T  is a linear mapping. We know by the superposition 

principle that 1 2
1 0 2 0( , ) ( , )c x t x c x t x+ ∈Ω  if 1

0( , )x t x , 2
0( , )x t x ∈Ω  and it satisfies the 

initial value condition 1 2
1 0 2 0c x c x+ . By uniqueness,  

1 2 1 2
1 0 2 0 1 0 2 0( , ) ( , ) ( , )x t c x c x c x t x c x t x+ = + . 

Then,  
1 2 1 2 1 2 1 2

1 0 2 0 1 0 2 0 1 0 2 0 1 0 2 0( ) ( , ) ( , ) ( , ) ( ) ( )T c x c x x t c x c x c x t x c x t x c T x c T x+ = + = + = + . 

Therefore T  is a linear mapping. 

   We then show that T  is an isomorphic mapping. For any ( )x t ∈Ω , there exists 

nRx ∈0  such that 0( ) ( )T x x t= . Therefore, T  is onto. Next for any 1
0( , )x t x , 

2
0( , )x t x ∈Ω  with 1

0( , )x t x 2
0( , )x t x≠ , it must be 1 2

0 0x x≠ . It is also true inversely. 

Therefore, T  is one-to-one. Combining these two, T  is isomorphic ⇒  nRΩ ≅ . 

  
 

Remark 6.3 Geometric meaning of : nT R →Ω : any integral curve ( )x t ∈Ω  

always intersects uniquely the super-plane 0tt =  at some point 0
nx R∈ . 

 

Remark 6.4 Since nRΩ ≅ , the algebraic structure of Ω  is clear. Any n  linearly 

independent elements (solutions, vector functions) of Ω  form a base of Ω .  
 

Definition 6.1 1 2( ), ( ), , ( )nx t x t x t ∈Ω  ( t I∈ ) is said to be linearly independent 

in I  if 
1

( ) 0
n

j j
j

c x t
=

≡∑  for all t I∈  implies that 1 2 0nc c c= = = . Conversely, 

these vector-valued functions are said to be linearly dependent in I  if there exist 
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1 2, , , nc c c  not all zero s.t. 
1

( ) 0
n

j j
j

c x t
=

≡∑  for all t I∈ .  

 

Definition 6.2 Any solutions 1 2( ), ( ), , ( )nx t x t x t ∈Ω  ( t I∈ ) that are linearly 

independent is said to be a fundamental set of solutions.  
 
Example 6.1 Show that 1+n  vector-valued functions   

1

1
0

( )

0

nx t R

 
 
 = ∈
 
 
 



, 2

0
( ) ,

0

n

t

x t R

 
 
 = ∈
 
 
 





, and 1
0

( )

0

n

n
n

t

x t R+

 
 
 = ∈
 
  
 



 

are linearly independent on any interval I .  

Show by contradiction. If there exist 1 2 1, , , nc c c +  not all zero s.t. 

1

1
( ) 0

n

j j
j

c x t
+

=

≡∑  for all t I∈ , then we have 1 2 1 0n
nc c t c t++ + + ≡  for all It∈ . But 

there are at most n  roots only for this polynomial equation according to the 

fundamental theorem of algebra unless 1 2 1 0nc c c += = = = . This is a 

contradiction.  
 
Remark 6.5 This example seems contradiction to Theorem 6.3 which says that there 
only exist n  linearly independent vector-valued solutions. In fact, it is not. Why?  
 

Theorem 6.4 (General Solution Structure) Let 1 2( ), ( ), , ( )nx t x t x t ∈Ω  be a 

fundamental set of solutions. Then the general solution is   

1
( ) ( )

n

j j
j

x t c x t
=

=∑ , 

where 1 2, , , nc c c  are any arbitrary constants. Moreover, it includes the whole 

solutions.  
Proof. Take a base of nR  as follows.  

1 0

1
0

( )

0

x t

 
 
 =
 
 
 



, 2 0

0
1

( )

0

x t

 
 
 =
 
 
 



, 0

0
0

, ( )

1

nx t

 
 
 =
 
 
 





. 

The corresponding solutions are as follows.  
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1 2( ), ( ), , ( )nx t x t x t ∈Ω , It∈ .  

It remains to show that 1 2( ), ( ), , ( )nx t x t x t  is a fundamental set of solutions. If  

1
( ) 0

n

j j
j

c x t
=

≡∑ , It∈ , 

there exists a mapping : nT R →Ω  such that 0{ ( )} ( )j jT x t x t=  ( nj ,,2,1 = ) by 

Theorem 6.3. Then  

0
1

{ ( )} 0
n

j j
j

c T x t
=

=∑ . 

Since T  is linear, we have 0
1

{ ( )} 0
n

j j
j

T c x t
=

=∑ . Then we have 0
1

( ) 0
n

j j
j

c x t
=

=∑ . ⇒  

1c = ==2c 0=nc . Therefore, 1 2( ), ( ), , ( )nx t x t x t  are linearly independent in I . 

We conclude that 
1

( ) ( )
n

j j
j

x t c x t
=

=∑  is a general solution. Moreover, it includes the 

whole solution because for ( )x t∀ ∈Ω  with 0( )x t , there exist 0
jc , 1, 2, ,j n=   s.t. 

0
0 0

1
( ) ( )

n

j j
j

x t c x t
=

=∑  since 0{ ( )}jx t  is a basis of nR . Then, 0

1
( ) ( )

n

j j
j

x t c x t
=

≡∑  by 

uniqueness. This shows that the general solution includes the whole solution.   
 

Definition 6.3 Let 1 2( ) ( ( ), ( ), , ( ))nt x t x t x tΦ =  . ( )tΦ  is said to be a matrix 

solution if 1 2( ), ( ), , ( )nx t x t x t ∈Ω . ( )tΦ  is said to be a fundamental matrix 

solution if 1 2( ), ( ), , ( )nx t x t x t ∈Ω  are linearly independent. A matrix solution 

( )tΦ  is said to be a principle matrix solution if 0( ) nt IΦ = , which is denoted as 

0( , )t tΦ .  

 

Theorem 6.5 (Matrix Form of General Solution) The general solution of ( )x A t x′ =  

is ( ) ( )x t t c= Φ , where ( )tΦ  is a fundamental matrix solution and 1 2( , , , )T
nc c c c=   

is an arbitrary n  vector. The solution of the IVP ( )x A t x′ =  with 0 0( )x t x=  is 
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0 0( ) ( , )x t t t x= Φ .  

 

Lemma 6.1 A matrix solution ( )tΦ  is a fundamental matrix solution ⇔  

det ( ) 0tΦ ≠  for all t I∈ .  

Proof. It is noted that 1 2( ), ( ), , ( )nx t x t x t ∈Ω  are linearly independent  

⇔  1 2det ( ( ), ( ), , ( )) 0nx t x t x t ≠  for all t I∈ .   

 

Definition 6.4 Denote ( ) det ( )W t t= Φ  is said to be a Wroskian determinant.  

 

Remark 6.6 

21
( ) 0 0 0

0 0 0

t t
t

 
 

Φ =  
 
 

, ( , )t∈ −∞ ∞ ; but det ( ) 0tΦ ≡ , ( , )t∈ −∞ ∞ . What is 

implied from this example?  
 

Theorem 6.6 (Liouville Formula) Suppose that ( )tΦ  is a matrix solution of 

( )x A t x′ = . Then 

∫Φ=Φ
t

t
dsstrAtt

0

})(exp{)(det)(det 0 , 

where 
1

( ) ( )
n

jj
j

trA t a t
=

=∑  is a trace of ( )A t , t I∈ .  

Proof. It suffices to show that )(det tΦ  satisfies xttrAx )(= . Tailor expansion of 

)( ht +Φ  near 0=h  yields  

)()())(()()()()( 22 hOttAhIhOththt +Φ+=+Φ+Φ=+Φ  . 

Since )()(1)())(1())(det( 22

1

hOttrAhhOtahtAhI
n

i
ii +⋅+=++=+ ∏

=

, we have  

)()(det)()(det)(det hOtttrA
h

tht
+Φ=

Φ−+Φ . 

Let 0→h  and we obtain that )(det tΦ  is a solution of xttrAx )(= .   
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Remark 6.7 Liouville Formula implies that if ( )tΦ  is a matrix solution of ( )x A t x′ = , 

then 

det ( ) 0tΦ ≠  for all t I∈  ⇔  0det ( ) 0tΦ ≠  for some 0t I∈ ;  

det ( ) 0tΦ ≡  for all t I∈  ⇔  0det ( ) 0tΦ =  for some 0t I∈ . 

 

Theorem 6.7 A matrix solution ( )tΦ  is a fundamental matrix solution ⇔  there 

exists a point 0t I∈  s.t. 0det ( ) 0tΦ ≠ .  

Theorem 6.8 (Properties of 0( , )t tΦ ) (Homework) 

1) 1
0 0( , ) ( ) ( )t t t t−Φ = Φ Φ ;  

2) 0 1 1 0( , ) ( , ) ( , )t t t t t tΦ = Φ Φ ;  

3) 1
0 0( , ) ( , )t t t t−Φ = Φ ;  

4) 0 0 0 0( , , ) ( , )x t t x t t x= Φ  

 
4.  Non-homogeneous Linear Systems 
 

Consider non-homogeneous linear system 

)()( thxtAx += , 0 0( )x t x= . 

 
Theorem 6.9 (General Solution Structure for Non-homogeneous Linear Systems) 

Suppose ( )x t∗  is a particular solution of )()( thxtAx += ; ( )tΦ  is a fundamental 

matrix solution of its corresponding homogeneous linear system ( )x A t x= . Then the 

general solution of )()( thxtAx +=  is given by  

( ) ( ) ( )x t t c x t∗= Φ + , 

where c  is an arbitrary vector constant. Moreover it includes the whole solutions. 

Proof. By the superposition principle (Corollary 6.2), ( ) ( )t c x t∗Φ +  is a solution of 

)()( thxtAx += . Since ( ) ( )x t t
c

∂
= Φ

∂
 is nonsingular for all t I∈ , ( ) ( )t c x t∗Φ +  is 
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a general solution too. Next, we show that ( ) ( )t c x t∗Φ +  includes the whole solution 

of )()( thxtAx += .  

For any solution ( )x t  of )()( thxtAx += , Take 1
0 0 0 0( )( ( ) ( ))c t x t x t− ∗= Φ − , it 

follows that ( )x t  and 1
0 0 0( ) ( ) ( )( ( ) ( )) ( )x t t t x t x t x t− ∗ ∗= Φ Φ − +  have the same initial 

value condition 0 0( ) ( )x t x t=   and so we find 0c  s.t. 0( ) ( ) ( ) ( )x t t c x t x t∗= Φ + ≡  . 

This shows that ( )x t  is an element of the general solutions.   

 

Remark 6.8 ( )x t∗  can be determined by ( )tΦ  by the method of Variation of 

Constants.  
 

Theorem 6.10 (Variation of Constants) The general solution of )()( thxtAx +=  is 

given by  

0

1( ) ( ) ( ) ( ) ( )d
t

t
x t t c t s h s s−= Φ +Φ Φ∫ ;  

The IVP of )()( thxtAx +=  with 0 0( )x t x=  is given by  

0

1 1
0 0( ) ( ) ( ) ( ) ( ) ( )d

t

t
x t t t x t s h s s− −= Φ Φ +Φ Φ∫  

0
0 0( , ) ( , ) ( )d

t

t
t t x t s h s s= Φ + Φ∫ , 

where ( )tΦ  is a fundamental matrix solution and 1
0 0( , ) ( ) ( )t t t t−Φ = Φ Φ  is a 

principle matrix solution.  

Proof. Suppose that ( ) ( ) ( )x t t c t= Φ  is a solution of )()( thxtAx += , where ( )c t  

will be determined. Substituting ( ) ( ) ( )x t t c t= Φ  into )()( thxtAx += , we have 

( ) ( ) ( )t c t h t′Φ = .  

Then,  

0

1( ) ( ) ( )d
t

t
c t s h s s−= Φ∫ . 

From this, it follows that  

0

1( ) ( ) ( ) ( )d
t

t
x t t s h s s∗ −= Φ Φ∫ . 

By the general solution structure, it yields 
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0

1( ) ( ) ( ) ( ) ( )d
t

t
x t t c t s h s s−= Φ +Φ Φ∫ , 

where c  is an arbitrary vector constant. If 0 0( )x t x=  is satisfied, 1
0 0( )c t x−= Φ  is 

determined. Then 

0

1 1
0 0( ) ( ) ( ) ( ) ( ) ( )d

t

t
x t t t x t s h s s− −= Φ Φ +Φ Φ∫  

0
0 0( , ) ( , ) ( )d

t

t
t t x t s h s s= Φ + Φ∫ .   

 
6. Summary 
 
•  Linear system has global solutions; 
•  Linear system has superposition principle, which is a key characterization of 

linear system no matter of equations;  
•  Linear system has an important algebra property: nRΩ ≅ , finite dimension; 
•  Linear system has general solution structure formulae.  

•  How to find a fundamental matrix solution ( )tΦ  remains unsolved.  

 
7. Homework 
 

1. Show that )()( thxtAx +=  has only 1n +  linearly independent solutions, where 

( )h t  is not identically zero on I ; ( )A t  and ( )h t  are continuous on I .  

2. Show that the IVP  

( ) ( , )x A t x f t x= + , 0 0( )x t x=  

   and the integral equations  

0

1 1
0 0( ) ( ) ( ) ( ) ( ) ( , ( ))d

t

t
x t t t x t s f s x s s− −= Φ Φ +Φ Φ∫  

   are equivalent. That is, they have the same set of solutions, where ( )tΦ  is a 

fundamental matrix solution, ( )A t  is continuous on I  and ( , )f t x  is 

continuous on nI R× .  


