Outline

1. Motivation
2. Global Existence
3. Superposition Principle
4. Homogeneous Linear Systems
5. Non-homogeneous Linear Systems
6. Summary

1. Motivation

- A particular class of system with global existence. (Fundamental Theorem)
- A good approximation to nonlinear system near a known solution. (Linearization)
- Solution structure and geometric property of the set of whole solutions. (Solution Structure and Direct Sum Decomposition)
- The theory of linear system is relatively complete except a few remains open.

If $x=x_{0}(t)$ is a particular solution of the following nonlinear systems

$$
\begin{equation*}
x^{\prime}=f(t, x) \tag{NS}
\end{equation*}
$$

where f is continuously differentiable, then $y=x-x_{0}(t)$ in (NS) implies

$$
\begin{align*}
y^{\prime} & =x^{\prime}-x_{0}^{\prime}(t)=f(t, x)-f\left(t, x_{0}(t)\right)=f\left(t, y+x_{0}(t)\right)-f\left(t, x_{0}(t)\right) \\
& =A(t) y+\alpha(t, y), \tag{LN1}
\end{align*}
$$

where $A(t)=\frac{\partial f}{\partial x}\left(t, x_{0}(t)\right), \frac{\partial f}{\partial x}(t, y) \neq 0$ near $y=0, \alpha(t, 0)=0$ and $\frac{\partial \alpha(t, 0)}{\partial x}=0$.
It is natural to study the linear system

$$
\begin{equation*}
z^{\prime}=A(t) z, \tag{LN2}
\end{equation*}
$$

and relationship between $y(t)$ of (LN1) and $z(t)$ of (LN2) near $y=0$. That is, is (LN2) a good approximation of (LN1) near $y=0$? What dose the condition $\frac{\partial f}{\partial x}(t, y) \neq 0$ near $y=0$ imply? (Hartman-Grobman Theorem)

2. Global Existence

Consider

$$
\dot{x}=A(t) x+h(t), \quad x \in R^{n},
$$

where $A(t)$ and $h(t) \in C(I), \quad I=(a, b)(a=-\infty$ or $b=\infty$ is permitted $) . \Rightarrow$ The following IVP

$$
\begin{equation*}
\dot{x}=A(t) x+h(t), \quad x\left(t_{0}\right)=x_{0} \tag{L1}
\end{equation*}
$$

has a local existence and uniqueness by Picard theorem. But the IVP (L1) has a global result!

Theorem 6.1 ((Fundamental Theorem) Suppose that $A(t)$ and $h(t) \in C(I)$, where $I=(a, b)$, if $t_{0} \in I$, then the solution of the IVP (L.1) is defined on (a, b).

Proof. Since $f(t, x)=A(t) x+h(t) \in C\left(I \times R^{n}\right)$ satisfies locally Lipschitz, then there exists a unique solution $x\left(t, t_{0}, x_{0}\right)$ of the IVP (L1) by Picard theorem, defined on $I_{\text {max }}$. If $I_{\text {max }} \neq(a, b)$, say $I_{\max }^{+}=\left[t_{0}, \omega_{+}\right)$with $\omega_{+}<b$, we show that by contradiction.

Let $t \in\left[t_{0}, \omega_{+}\right)$. Then we have

$$
\begin{gathered}
x\left(t, t_{0}, x_{0}\right)-x_{0}=\int_{t_{0}}^{t}\left\{A(s) x\left(s, t_{0}, x_{0}\right)+h(s)\right\} d s . \\
\Rightarrow\left\|x\left(t, t_{0}, x_{0}\right)\right\| \leq\left\|x_{0}\right\|+\int_{t_{0}}^{t}\|A(s)\|\left\|x\left(s, t_{0}, x_{0}\right)\right\| d s+\int_{t_{0}}^{\omega_{+}}\|h(s)\| d s
\end{gathered}
$$

By Gronwall's inequality, we have

$$
\begin{aligned}
\left\|x\left(t, t_{0}, x_{0}\right)\right\| & \leq\left\{\left\|x_{0}\right\|+\int_{t_{0}}^{\omega_{+}}\|h(s)\| d s\right\} \cdot \exp \left(\int_{t_{0}}^{t}\|A(s)\| d s\right) \\
& \leq\left\{\left\|x_{0}\right\|+\int_{t_{0}}^{\omega_{+}}\|h(s)\| d s\right\} \cdot \exp \left(\int_{t_{0}}^{\omega_{+}}\|A(s)\| d s\right)<\infty .
\end{aligned}
$$

Thus, $\left\|x\left(t, t_{0}, x_{0}\right)\right\|$ is uniformly bounded for $\left(t_{0}, x_{0}\right)$ on $I_{\text {max }}^{+}$. However, we obtain $\left\|x\left(t, t_{0}, x_{0}\right)\right\| \rightarrow \infty$ as $t \rightarrow \omega_{+}^{-}$by the continuation theorem. This is a contradiction. It is similar to show the case of $I_{\max }^{-}=\left(\omega_{-}, t_{0}\right]$ with $\omega_{-}>a$.

Remark 6.1 Linear system has global solutions. We can regard whole solutions of the linear system (F1) as a set just because of global existence.

3. Superposition Principle

Theorem 6.2 (Superposition Principle) Suppose that $x_{1}(t)$ and $x_{2}(t)$ are solutions of $x^{\prime}=A(t) x+h_{1}(t)$ and $x^{\prime}=A(t) x+h_{2}(t)$ respectively. Then $c_{1} x_{1}(t)+c_{2} x_{2}(t)$ is a solution of $x^{\prime}=A(t) x+\left(c_{1} h_{1}(t)+c_{2} h_{2}(t)\right)$.

Remark 6.2 From math point of view, superposition principle is quite simple. However, it is a characterization of linear systems. Extremely important in practice! From control point of view, if we regard $h(t)$ as an input and $x(t)$ response (output), then, any dynamic system satisfies superposition principle is linear. This principle can be verified based on experiment without having differential equations.

Corollary 6.1 Suppose that $x_{1}(t)$ and $x_{2}(t)$ are solutions of $x^{\prime}=A(t) x$. Then $c_{1} x_{1}(t)+c_{2} x_{2}(t)$ is a solution of $x^{\prime}=A(t) x$.

Proof. Taking $h_{1}(t)=h_{2}(t) \equiv 0$ in Theorem 6.2 yields the result.

Corollary 6.2 Suppose that $x_{1}(t)$ and $x_{2}(t)$ are solutions of $x^{\prime}=A(t) x+h(t)$ and $x^{\prime}=A(t) x$ respectively. Then $x_{1}(t)+x_{2}(t)$ is a solution of $x^{\prime}=A(t) x+h(t)$.

Proof. Taking $h_{1}(t)=h(t), h_{2}(t) \equiv 0$ in Theorem 6.2 yields the result.

Corollary 6.3 Suppose that $x_{1}(t)$ and $x_{2}(t)$ are solutions of $x^{\prime}=A(t) x+h(t)$. Then $x_{1}(t)-x_{2}(t)$ is a solution of $x^{\prime}=A(t) x$.

Proof. Taking $h_{1}(t)=h_{2}(t)=h(t)$ in Theorem 6.2 yields the result.

4. Homogeneous Linear Systems

Consider the homogeneous linear system $x^{\prime}=A(t) x$. Let Ω be the set of whole solutions of $x^{\prime}=A(t) x$.

Theorem 6.3 Ω is an n-dimensional vector linear space.
Proof. For any $t_{0} \in I$ and $x_{0} \in R^{n}$, there exists a unique solution $x\left(t, x_{0}\right), t \in I$.

Define a mapping $T: R^{n} \rightarrow \Omega$ as follows.

$$
T\left(x_{0}\right)=x\left(t, x_{0}\right) .
$$

We first show that T is a linear mapping. We know by the superposition principle that $c_{1} x\left(t, x_{0}^{1}\right)+c_{2} x\left(t, x_{0}^{2}\right) \in \Omega$ if $x\left(t, x_{0}^{1}\right), x\left(t, x_{0}^{2}\right) \in \Omega$ and it satisfies the initial value condition $c_{1} x_{0}^{1}+c_{2} x_{0}^{2}$. By uniqueness,

$$
x\left(t, c_{1} x_{0}^{1}+c_{2} x_{0}^{2}\right)=c_{1} x\left(t, x_{0}^{1}\right)+c_{2} x\left(t, x_{0}^{2}\right) .
$$

Then,

$$
T\left(c_{1} x_{0}^{1}+c_{2} x_{0}^{2}\right)=x\left(t, c_{1} x_{0}^{1}+c_{2} x_{0}^{2}\right)=c_{1} x\left(t, x_{0}^{1}\right)+c_{2} x\left(t, x_{0}^{2}\right)=c_{1} T\left(x_{0}^{1}\right)+c_{2} T\left(x_{0}^{2}\right) .
$$

Therefore T is a linear mapping.
We then show that T is an isomorphic mapping. For any $x(t) \in \Omega$, there exists $x_{0} \in R^{n}$ such that $T\left(x_{0}\right)=x(t)$. Therefore, T is onto. Next for any $x\left(t, x_{0}^{1}\right)$, $x\left(t, x_{0}^{2}\right) \in \Omega$ with $x\left(t, x_{0}^{1}\right) \neq x\left(t, x_{0}^{2}\right)$, it must be $x_{0}^{1} \neq x_{0}^{2}$. It is also true inversely. Therefore, T is one-to-one. Combining these two, T is isomorphic $\Rightarrow \Omega \cong R^{n}$.

Remark 6.3 Geometric meaning of $T: R^{n} \rightarrow \Omega$: any integral curve $x(t) \in \Omega$ always intersects uniquely the super-plane $t=t_{0}$ at some point $x_{0} \in R^{n}$.

Remark 6.4 Since $\Omega \cong R^{n}$, the algebraic structure of Ω is clear. Any n linearly independent elements (solutions, vector functions) of Ω form a base of Ω.

Definition 6.1 $x_{1}(t), x_{2}(t), \cdots, x_{n}(t) \in \Omega(t \in I)$ is said to be linearly independent in I if $\sum_{j=1}^{n} c_{j} x_{j}(t) \equiv 0$ for all $t \in I$ implies that $c_{1}=c_{2}=\cdots c_{n}=0$. Conversely, these vector-valued functions are said to be linearly dependent in I if there exist
$c_{1}, c_{2}, \cdots, c_{n}$ not all zero s.t. $\sum_{j=1}^{n} c_{j} x_{j}(t) \equiv 0$ for all $t \in I$.

Definition 6.2 Any solutions $x_{1}(t), x_{2}(t), \cdots, x_{n}(t) \in \Omega(t \in I)$ that are linearly independent is said to be a fundamental set of solutions.

Example 6.1 Show that $n+1$ vector-valued functions

$$
x_{1}(t)=\left(\begin{array}{c}
1 \\
0 \\
\vdots \\
0
\end{array}\right) \in R^{n}, x_{2}(t)=\left(\begin{array}{c}
t \\
0 \\
\vdots \\
0
\end{array}\right) \in R^{n}, \cdots, \text { and } x_{n+1}(t)=\left(\begin{array}{c}
t^{n} \\
0 \\
\vdots \\
0
\end{array}\right) \in R^{n}
$$

are linearly independent on any interval I.
Show by contradiction. If there exist $c_{1}, c_{2}, \cdots, c_{n+1}$ not all zero s.t. $\sum_{j=1}^{n+1} c_{j} x_{j}(t) \equiv 0$ for all $t \in I$, then we have $c_{1}+c_{2} t+\cdots+c_{n+1} t^{n} \equiv 0$ for all $t \in I$. But there are at most n roots only for this polynomial equation according to the fundamental theorem of algebra unless $c_{1}=c_{2}=\cdots=c_{n+1}=0$. This is a contradiction.

Remark 6.5 This example seems contradiction to Theorem 6.3 which says that there only exist n linearly independent vector-valued solutions. In fact, it is not. Why?

Theorem 6.4 (General Solution Structure) Let $x_{1}(t), x_{2}(t), \cdots, x_{n}(t) \in \Omega$ be a fundamental set of solutions. Then the general solution is

$$
x(t)=\sum_{j=1}^{n} c_{j} x_{j}(t),
$$

where $c_{1}, c_{2}, \cdots, c_{n}$ are any arbitrary constants. Moreover, it includes the whole solutions.
Proof. Take a base of R^{n} as follows.

$$
x_{1}\left(t_{0}\right)=\left(\begin{array}{c}
1 \\
0 \\
\vdots \\
0
\end{array}\right), \quad x_{2}\left(t_{0}\right)=\left(\begin{array}{c}
0 \\
1 \\
\vdots \\
0
\end{array}\right), \cdots, x_{n}\left(t_{0}\right)=\left(\begin{array}{c}
0 \\
0 \\
\vdots \\
1
\end{array}\right)
$$

The corresponding solutions are as follows.

$$
x_{1}(t), x_{2}(t), \cdots, x_{n}(t) \in \Omega, \quad t \in I .
$$

It remains to show that $x_{1}(t), x_{2}(t), \cdots, x_{n}(t)$ is a fundamental set of solutions. If

$$
\sum_{j=1}^{n} c_{j} x_{j}(t) \equiv 0, \quad t \in I,
$$

there exists a mapping $T: R^{n} \rightarrow \Omega$ such that $T\left\{x_{j}\left(t_{0}\right)\right\}=x_{j}(t)(j=1,2, \cdots, n)$ by Theorem 6.3. Then

$$
\sum_{j=1}^{n} c_{j} T\left\{x_{j}\left(t_{0}\right)\right\}=0 .
$$

Since T is linear, we have $T\left\{\sum_{j=1}^{n} c_{j} x_{j}\left(t_{0}\right)\right\}=0$. Then we have $\sum_{j=1}^{n} c_{j} x_{j}\left(t_{0}\right)=0 . \Rightarrow$ $c_{1}=c_{2}=\cdots=c_{n}=0$. Therefore, $x_{1}(t), x_{2}(t), \cdots, x_{n}(t)$ are linearly independent in I. We conclude that $x(t)=\sum_{j=1}^{n} c_{j} x_{j}(t)$ is a general solution. Moreover, it includes the whole solution because for $\forall x(t) \in \Omega$ with $x\left(t_{0}\right)$, there exist $c_{j}^{0}, j=1,2, \cdots, n$ s.t. $x\left(t_{0}\right)=\sum_{j=1}^{n} c_{j}^{0} x_{j}\left(t_{0}\right)$ since $\left\{x_{j}\left(t_{0}\right)\right\}$ is a basis of R^{n}. Then, $x(t) \equiv \sum_{j=1}^{n} c_{j}^{0} x_{j}(t)$ by uniqueness. This shows that the general solution includes the whole solution.

Definition 6.3 Let $\Phi(t)=\left(x_{1}(t), x_{2}(t), \cdots, x_{n}(t)\right) . \Phi(t)$ is said to be a matrix solution if $x_{1}(t), x_{2}(t), \cdots, x_{n}(t) \in \Omega . \Phi(t)$ is said to be a fundamental matrix solution if $x_{1}(t), x_{2}(t), \cdots, x_{n}(t) \in \Omega$ are linearly independent. A matrix solution $\Phi(t)$ is said to be a principle matrix solution if $\Phi\left(t_{0}\right)=I_{n}$, which is denoted as $\Phi\left(t, t_{0}\right)$.

Theorem 6.5 (Matrix Form of General Solution) The general solution of $x^{\prime}=A(t) x$ is $x(t)=\Phi(t) c$, where $\Phi(t)$ is a fundamental matrix solution and $c=\left(c_{1}, c_{2}, \cdots, c_{n}\right)^{T}$ is an arbitrary n vector. The solution of the IVP $x^{\prime}=A(t) x$ with $x\left(t_{0}\right)=x_{0}$ is
$x(t)=\Phi\left(t, t_{0}\right) x_{0}$.

Lemma 6.1 A matrix solution $\Phi(t)$ is a fundamental matrix solution \Leftrightarrow $\operatorname{det} \Phi(t) \neq 0$ for all $t \in I$.

Proof. It is noted that $x_{1}(t), x_{2}(t), \cdots, x_{n}(t) \in \Omega$ are linearly independent
$\Leftrightarrow \operatorname{det}\left(x_{1}(t), x_{2}(t), \cdots, x_{n}(t)\right) \neq 0$ for all $t \in I$.

Definition 6.4 Denote $W(t)=\operatorname{det} \Phi(t)$ is said to be a Wroskian determinant.

Remark 6.6 $\Phi(t)=\left(\begin{array}{ccc}1 & t & t^{2} \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right), t \in(-\infty, \infty)$; but $\operatorname{det} \Phi(t) \equiv 0, t \in(-\infty, \infty)$. What is implied from this example?

Theorem 6.6 (Liouville Formula) Suppose that $\Phi(t)$ is a matrix solution of $x^{\prime}=A(t) x$. Then

$$
\operatorname{det} \Phi(t)=\operatorname{det} \Phi\left(t_{0}\right) \exp \left\{\int_{t_{0}}^{t} t r A(s) d s\right\}
$$

where $\operatorname{tr} A(t)=\sum_{j=1}^{n} a_{j j}(t)$ is a trace of $A(t), t \in I$.

Proof. It suffices to show that $\operatorname{det} \Phi(t)$ satisfies $\dot{x}=\operatorname{tr} A(t) x$. Tailor expansion of $\Phi(t+h)$ near $h=0$ yields

$$
\Phi(t+h)=\Phi(t)+h \dot{\Phi}(t)+O\left(h^{2}\right)=(I+h A(t)) \Phi(t)+O\left(h^{2}\right)
$$

Since $\operatorname{det}(I+h A(t))=\prod_{i=1}^{n}\left(1+h a_{i i}(t)\right)+O\left(h^{2}\right)=1+h \cdot \operatorname{tr} A(t)+O\left(h^{2}\right)$, we have

$$
\frac{\operatorname{det} \Phi(t+h)-\operatorname{det} \Phi(t)}{h}=\operatorname{tr} A(t) \operatorname{det} \Phi(t)+O(h)
$$

Let $h \rightarrow 0$ and we obtain that $\operatorname{det} \Phi(t)$ is a solution of $\dot{x}=\operatorname{tr} A(t) x$.

Remark 6.7 Liouville Formula implies that if $\Phi(t)$ is a matrix solution of $x^{\prime}=A(t) x$, then

$$
\begin{aligned}
& \operatorname{det} \Phi(t) \neq 0 \text { for all } t \in I \Leftrightarrow \operatorname{det} \Phi\left(t_{0}\right) \neq 0 \text { for some } t_{0} \in I ; \\
& \operatorname{det} \Phi(t) \equiv 0 \text { for all } t \in I \Leftrightarrow \operatorname{det} \Phi\left(t_{0}\right)=0 \text { for some } t_{0} \in I .
\end{aligned}
$$

Theorem 6.7 A matrix solution $\Phi(t)$ is a fundamental matrix solution \Leftrightarrow there exists a point $t_{0} \in I$ s.t. $\operatorname{det} \Phi\left(t_{0}\right) \neq 0$.

Theorem 6.8 (Properties of $\left.\Phi\left(t, t_{0}\right)\right)$ (Homework)

1) $\Phi\left(t, t_{0}\right)=\Phi(t) \Phi^{-1}\left(t_{0}\right)$;
2) $\Phi\left(t, t_{0}\right)=\Phi\left(t, t_{1}\right) \Phi\left(t_{1}, t_{0}\right)$;
3) $\Phi^{-1}\left(t, t_{0}\right)=\Phi\left(t_{0}, t\right)$;
4) $x\left(t, t_{0}, x_{0}\right)=\Phi\left(t, t_{0}\right) x_{0}$

4. Non-homogeneous Linear Systems

Consider non-homogeneous linear system

$$
\dot{x}=A(t) x+h(t), \quad x\left(t_{0}\right)=x_{0} .
$$

Theorem 6.9 (General Solution Structure for Non-homogeneous Linear Systems)
Suppose $x^{*}(t)$ is a particular solution of $\dot{x}=A(t) x+h(t) ; ~ \Phi(t)$ is a fundamental matrix solution of its corresponding homogeneous linear system $\dot{x}=A(t) x$. Then the general solution of $\dot{x}=A(t) x+h(t)$ is given by

$$
x(t)=\Phi(t) c+x^{*}(t)
$$

where c is an arbitrary vector constant. Moreover it includes the whole solutions.
Proof. By the superposition principle (Corollary 6.2), $\Phi(t) c+x^{*}(t)$ is a solution of $\dot{x}=A(t) x+h(t)$. Since $\frac{\partial x(t)}{\partial c}=\Phi(t)$ is nonsingular for all $t \in I, \Phi(t) c+x^{*}(t)$ is
a general solution too. Next, we show that $\Phi(t) c+x^{*}(t)$ includes the whole solution of $\dot{x}=A(t) x+h(t)$.

For any solution $\tilde{x}(t)$ of $\dot{x}=A(t) x+h(t)$, Take $c_{0}=\Phi^{-1}\left(t_{0}\right)\left(\tilde{x}\left(t_{0}\right)-x^{*}\left(t_{0}\right)\right)$, it follows that $\tilde{x}(t)$ and $x(t)=\Phi(t) \Phi^{-1}\left(t_{0}\right)\left(\tilde{x}\left(t_{0}\right)-x^{*}\left(t_{0}\right)\right)+x^{*}(t)$ have the same initial value condition $x\left(t_{0}\right)=\tilde{x}\left(t_{0}\right)$ and so we find c_{0} s.t. $x(t)=\Phi(t) c_{0}+x^{*}(t) \equiv \tilde{x}(t)$. This shows that $\tilde{x}(t)$ is an element of the general solutions.

Remark $6.8 x^{*}(t)$ can be determined by $\Phi(t)$ by the method of Variation of Constants.

Theorem 6.10 (Variation of Constants) The general solution of $\dot{x}=A(t) x+h(t)$ is given by

$$
x(t)=\Phi(t) c+\Phi(t) \int_{t_{0}}^{t} \Phi^{-1}(s) h(s) \mathrm{d} s ;
$$

The IVP of $\dot{x}=A(t) x+h(t)$ with $x\left(t_{0}\right)=x_{0}$ is given by

$$
\begin{aligned}
x(t) & =\Phi(t) \Phi^{-1}\left(t_{0}\right) x_{0}+\Phi(t) \int_{t_{0}}^{t} \Phi^{-1}(s) h(s) \mathrm{d} s \\
& =\Phi\left(t, t_{0}\right) x_{0}+\int_{t_{0}}^{t} \Phi(t, s) h(s) \mathrm{d} s,
\end{aligned}
$$

where $\Phi(t)$ is a fundamental matrix solution and $\Phi\left(t, t_{0}\right)=\Phi(t) \Phi^{-1}\left(t_{0}\right)$ is a principle matrix solution.

Proof. Suppose that $x(t)=\Phi(t) c(t)$ is a solution of $\dot{x}=A(t) x+h(t)$, where $c(t)$ will be determined. Substituting $x(t)=\Phi(t) c(t)$ into $\dot{x}=A(t) x+h(t)$, we have

$$
\Phi(t) c^{\prime}(t)=h(t) .
$$

Then,

$$
c(t)=\int_{t_{0}}^{t} \Phi^{-1}(s) h(s) \mathrm{d} s
$$

From this, it follows that

$$
x^{*}(t)=\Phi(t) \int_{t_{0}}^{t} \Phi^{-1}(s) h(s) \mathrm{d} s .
$$

By the general solution structure, it yields

$$
x(t)=\Phi(t) c+\Phi(t) \int_{t_{0}}^{t} \Phi^{-1}(s) h(s) \mathrm{d} s,
$$

where c is an arbitrary vector constant. If $x\left(t_{0}\right)=x_{0}$ is satisfied, $c=\Phi^{-1}\left(t_{0}\right) x_{0}$ is determined. Then

$$
\begin{aligned}
x(t) & =\Phi(t) \Phi^{-1}\left(t_{0}\right) x_{0}+\Phi(t) \int_{t_{0}}^{t} \Phi^{-1}(s) h(s) \mathrm{d} s \\
& =\Phi\left(t, t_{0}\right) x_{0}+\int_{t_{0}}^{t} \Phi(t, s) h(s) \mathrm{ds} .
\end{aligned}
$$

6. Summary

- Linear system has global solutions;
- Linear system has superposition principle, which is a key characterization of linear system no matter of equations;
- Linear system has an important algebra property: $\Omega \cong R^{n}$, finite dimension;
- Linear system has general solution structure formulae.
- How to find a fundamental matrix solution $\Phi(t)$ remains unsolved.

7. Homework

1. Show that $\dot{x}=A(t) x+h(t)$ has only $n+1$ linearly independent solutions, where $h(t)$ is not identically zero on $I ; A(t)$ and $h(t)$ are continuous on I.
2. Show that the IVP

$$
\dot{x}=A(t) x+f(t, x), \quad x\left(t_{0}\right)=x_{0}
$$

and the integral equations

$$
x(t)=\Phi(t) \Phi^{-1}\left(t_{0}\right) x_{0}+\Phi(t) \int_{t_{0}}^{t} \Phi^{-1}(s) f(s, x(s)) \mathrm{d} s
$$

are equivalent. That is, they have the same set of solutions, where $\Phi(t)$ is a fundamental matrix solution, $A(t)$ is continuous on I and $f(t, x)$ is continuous on $I \times R^{n}$.

