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1. Motivation

A particular class of system with global existence. (Fundamental
Theorem)
A good approximation to nonlinear system near a known solution.
(Linearization)

Solution structure and geometric property of the set of whole solutions.
(Solution Structure and Direct Sum Decomposition)

The theory of linear system is relatively complete except a few remains
open.

If x=Xx,(t) isa particular solution of the following nonlinear systems
X' = f(t,X), (NS)
where f is continuously differentiable, then y=x—x,(t) in (NS) implies

y' =X =x(0) = Tt x) = f(t, X, (1) = £ (&, y+ X, (1)) = F (€, X, (1))

=A)y+alt,y), (LN1)
where A(t):Z—f(t,xO(t)), ;i(t, y)#0 near y=0, «(t,0)=0 and Ga(t,O):O.
X X
It is natural to study the linear system
z'=At)z, (LN2)

and relationship between y(t) of (LN1) and z(t) of (LN2) near y=0. That s, is

(LN2) a good approximation of (LN1) near y=07? What dose the condition

g—f(t, y)#0 near y=0 imply? (Hartman-Grobman Theorem)
X



2. Global Existence

Consider

x=A(t)x+h(t), xeR",

where A(t) and h(t) eC(l), I=(a,b)(a=—- or b=ow is permitted). =
The following VP
X=AMt)x+h(t), x(t,)=Xx, (L1)

has a local existence and uniqueness by Picard theorem. But the IVP (L1) has a global
result!

Theorem 6.1 ((Fundamental Theorem) Suppose that A(t) and h(t) e C(l), where

| =(a,b), if t, e, then the solution of the IVP (L.1) is defined on (a,b).

Proof. Since f(t,x)=A(t)x+h(t) e C(I xR") satisfies locally Lipschitz, then there

exists a unique solution x(t, t,, x,) of the IVP (L1) by Picard theorem, defined on

oo - 1T 1 = (@Db), say 1., =[t,,®,) with @, <b, we show that by

max

contradiction.

Let te[t,, @,). Then we have
t
X(t,ty, Xy) — X, = LO{A(s)x(s, ty, X,)+h(s)}ds.

t @,
= [ x(to o) 1< 11 1+, A HIX(S, to, X0) 105+ [ [[(s) 1 ds
By Gronwall’s inequality, we have
w, t
[l %t Xo) 1<l X I +th Ih(s) ] ds}-eXp(LOII A(s) [ ds)
<{lI%, 1+]” lIn(s) | ds}-exp([ "I A(s) [ ds) < o
Thus, || x(t,ty, X,)|| is uniformly bounded for (t,, x,) on 1. . However, we

obtain || x(t,t,, X,)|| >~ as t—w, by the continuation theorem. This is a

contradiction. It is similar to show the case of I, =(o_,t,] with o_>a. o

Remark 6.1 Linear system has global solutions. We can regard whole solutions of the
linear system (F1) as a set just because of global existence.



3. Superposition Principle

Theorem 6.2 (Superposition Principle) Suppose that x,(t)and x,(t) are solutions
of x'=A(t)x+h,(t) and x'=A(t)x+h,(t) respectively. Then c,x,(t)+c,X,(t) is a

solution of x'= A(t)x+ (c,h,(t)+c,h,(t)).

Remark 6.2 From math point of view, superposition principle is quite simple.
However, it is a characterization of linear systems. Extremely important in practice!

From control point of view, if we regard h(t) as an input and x(t) response

(output), then, any dynamic system satisfies superposition principle is linear. This
principle can be verified based on experiment without having differential equations.

Corollary 6.1 Suppose that x,(t) and x,(t) are solutions of x'=A(t)x. Then
c, X, (t) +¢,x,(t) isasolutionof x"=A(t)x.

Proof. Taking h,(t)=h,(t)=0 in Theorem 6.2 yields the result. o

Corollary 6.2 Suppose that x,(t) and x,(t) are solutions of x'=A(t)x+h(t) and
x'=A(t)x respectively. Then x,(t)+X,(t) isasolutionof x'=A(t)x+h(t).

Proof. Taking h,(t)=h(t), h,(t)=0 in Theorem 6.2 yields the result. o

Corollary 6.3 Suppose that x,(t)and x,(t) are solutions of x'= A(t)x+h(t). Then
X,(t) — X, (t) isasolution of x'=A(t)x.

Proof. Taking h,(t) =h,(t) =h(t) in Theorem 6.2 yields the result. o

4. Homogeneous Linear Systems

Consider the homogeneous linear system x'=A(t)x. Let Q be the set of whole

solutions of x'=A(t)x.



Theorem 6.3 Q isan n-dimensional vector linear space.

Proof. For any t, el and x, € R", there exists a unique solution Xx(t,x,), tel.

Define a mapping T:R" — Q as follows.

T (%) = X(t,%,) -
We first show that T is a linear mapping. We know by the superposition

principle that ¢ x(t, x;) +¢,x(t,x2) e Q if x(t, x,), x(t, xZ) e Q and it satisfies the
initial value condition c¢,x, +c,x;. By uniqueness,

X(t,C,Xg +C,X0) = ¢ X(t, Xg) +C,X(t,XZ) .
Then,
T(c,Xg +C,x2) = X(t,C Xg +C,X2) = C,X(t, Xg) +C,X(t,x}) =, T(xg)+C,T(XZ).
Therefore T isa linear mapping.

We then show that T is an isomorphic mapping. For any x(t) € Q2, there exists
X, € R" such that T(x,)=x(t). Therefore, T is onto. Next for any x(t,x;),
x(t,x2)eQ with x(t, x;) # x(t, xZ), it must be x;=xZ. It is also true inversely.

Therefore, T is one-to-one. Combining these two, T is isomorphic = Q=R".

O

Remark 6.3 Geometric meaning of T:R" —>Q: any integral curve x(t)eQ

always intersects uniquely the super-plane t=t, atsome point x,€R".

Remark 6.4 Since Q=R", the algebraic structure of Q is clear. Any n linearly

independent elements (solutions, vector functions) of Q form a base of Q.
Definition 6.1 x,(t), x,(t),---, X, (t)e Q (tel) is said to be linearly independent

in I if Zijj(t)zO for all tel implies that c,=c,=---c, =0. Conversely,
j=1

these vector-valued functions are said to be linearly dependent in | if there exist



notall zerost. » c,x;(t)=0 forall tel.

j=1

C;,Cy,e+,C

n

Definition 6.2 Any solutions x,(t), X, (t),---,x,(t)eQ (tel ) that are linearly

independent is said to be a fundamental set of solutions.

Example 6.1 Show that n+1 vector-valued functions

1 t t"
0 0

x (t) = : eR", %, (t) = : eR",- and x,(t) = 0 eR’
0 0 0

are linearly independent on any interval 1| .

Show by contradiction. If there exist c,,c,,---,C not all zero s.t.

1¥n+l

n+1

chxj(t)zo forall tel,thenwe havec, +c,t+---+c,,t"=0 forall tel.But
j=L

there are at most n roots only for this polynomial equation according to the

fundamental theorem of algebra unless c¢,=c,=---=c,,=0 . This is a

contradiction.

Remark 6.5 This example seems contradiction to Theorem 6.3 which says that there
only exist n linearly independent vector-valued solutions. In fact, it is not. Why?

Theorem 6.4 (General Solution Structure) Let x,(t), X,(t),---,x,(t)eQ be a

fundamental set of solutions. Then the general solution is

x(t):Zn:cjxj(t),

where c,,c,,---,C, are any arbitrary constants. Moreover, it includes the whole

solutions.
Proof. Take a base of R" as follows.
1 0 0
0 1 0
Xl(to) I Xz(to) = . Xn(to) =
0 0 1

The corresponding solutions are as follows.



X, (1), x,(t),---,x, () eQ, tel.

It remains to show that x,(t), x,(t),---, X, (t) isafundamental set of solutions. If

D cx;(t)=0, tel,
=i

there exists a mapping T:R" —Q such that T{x;(t,)}=x,;{t) (j=12,---,n) by

Theorem 6.3. Then

Zn:ch{xj(tO)}:O.

Since T is linear, we have T{Zn:cjxj(to)}zo. Then we have Zn:cjxj(to)=0. =
j=1 j=1
c,=C,=---=¢C,=0. Therefore, x,(t), X,(t),---,x,(t) are linearly independent in I .
We conclude that x(t) :Zn:cjxj(t) is a general solution. Moreover, it includes the
j=1
whole solution because for Vv x(t) e Q with x(t,), there exist c?, j=12,---,n st

X(to) =D cix;(t,) since {x,(t,)} is a basis of R". Then, x(t)=> cix,(t) by
j=1 i=t

uniqueness. This shows that the general solution includes the whole solution. o

Definition 6.3 Let ®(t) = (x,(t), X,(t),---,x,(t)) . ®(t) is said to be a matrix
solution if x,(t), X, (t),---,x,(t) e Q. ®(t) is said to be a fundamental matrix
solution if x,(t), x,(t),---,x,(t) e are linearly independent. A matrix solution
®(t) is said to be a principle matrix solution if ®(t,)=1,, which is denoted as

D(t,t,).

Theorem 6.5 (Matrix Form of General Solution) The general solution of x'= A(t)x
is x(t) = d(t)c, where ®(t) is a fundamental matrix solution and c=(c,c,,-,C,)"
is an arbitrary n vector. The solution of the IVP X' =A(t)x with x(t,)=x, Iis

6



X(t) =D(t, ty)X,

Lemma 6.1 A matrix solution ®(t) is a fundamental matrix solution <
detd(t)=0 forall tel.
Proof. It is noted that x,(t), X, (t),---,x,(t) € Q are linearly independent

< det(x,(t), x,(t),---,x,(t))=0 forall tel. o

Definition 6.4 Denote W (t) =det ®(t) is said to be a Wroskian determinant.

1t t?
Remark 6.6 ®(t)=|{0 0 0 |, te(—w,o); but detd(t)=0, te(—o, o). What is
0 0O

implied from this example?

Theorem 6.6 (Liouville Formula) Suppose that ®(t) is a matrix solution of
x'=A(t)x. Then

det d(t) = det d(t,) exp{j: trA(s)ds},
where trA(t):Zajj (t) isatrace of A(t), tel.
j=1

Proof. It suffices to show that detd(t) satisfies x =trA(t)x. Tailor expansion of
®d(t+h) near h=0 yields

®(t +h) = O(t) + hd(t) + O(h?) = (I + hA®))D(t) + O(h?).

Since det(l +hA(t)) = f[(1+ ha, (t)) + O(h*) =1+ h-trA(t) + O(h*), we have

i=1
detd(t + h) — det d(t)
h

Let h— 0 and we obtain that detd(t) isasolution of x =trA(t)x. o

— trA(t) det d(t) + O(h) .



Remark 6.7 Liouville Formula implies that if ®(t) is a matrix solution of X' = A(t)x,

then
detd(t)#0 forall tel <« detd(t))=0 forsome t,el;

detd(t)=0 forall tel < detd(t,)=0 forsome t,el.

Theorem 6.7 A matrix solution ®(t) is a fundamental matrix solution < there
exists a point t, el s.t. detd(t))=0.

Theorem 6.8 (Properties of ®(t,t,)) (Homework)

1) @t t,)=dM)D(t,);

2) O, t,))=D(t, t,)D(t,, t,);

3) 7t t,) =D(t,,t);

4) x(t, ty, X,) =D(t, ty)X,

4. Non-homogeneous Linear Systems
Consider non-homogeneous linear system

X=AMt)x+h(t), x(t,)=x,.

Theorem 6.9 (General Solution Structure for Non-homogeneous Linear Systems)

Suppose x"(t) is a particular solution of X = A(t)x+h(t); ®(t) is a fundamental
matrix solution of its corresponding homogeneous linear system x = A(t)x . Then the
general solution of % = A(t)x+h(t) is given by

X(t) =d(t)c+x*(t),
where ¢ is an arbitrary vector constant. Moreover it includes the whole solutions.

Proof. By the superposition principle (Corollary 6.2), ®(t)c+x"(t) is a solution of

X =A(t)x+h(t). Since a)(;—(t):CI)(t) is nonsingular for all tel, ®(t)c+x"(t) is
C



a general solution too. Next, we show that ®(t)c+x"(t) includes the whole solution
of x=A(t)x+h(t).

For any solution X(t) of %= A(t)x+h(t), Take c, =D 7*(t,)(X(t,) - X (t,)), it
follows that X(t) and x(t) = ®(t)d(t,)(X(t,) —x"(t,)) + X (t) have the same initial
value condition x(t,) = X(t,) and so we find c, s.t. x(t)=®(t)c, +x"(t) = X(t) .

This shows that X(t) is an element of the general solutions. o

Remark 6.8 x*(t) can be determined by ®(t) by the method of Variation of

Constants.

Theorem 6.10 (Variation of Constants) The general solution of x = A(t)x+ h(t) is
given by
X(t) = d(t)c + o) : @L(s)h(s)ds ;

The IVP of x=A(t)x+h(t) with x(t,)=x, isgivenby
X() = DO (t)x, + ()| D (s)h(s)ds
— (1), +j: @(t, s)h(s)ds,

where ®(t) is a fundamental matrix solution and ®(t, t,)=d(t)Dd'(t,) is a

principle matrix solution.

Proof. Suppose that x(t) =®(t)c(t) is a solution of X = A(t)x+h(t), where c(t)
will be determined. Substituting x(t) = d(t)c(t) into x = A(t)x + h(t) , we have

D(t)C'(t) = h(t).
Then,
c(t) =] ®*(s)h(s)ds.
From this, it follows that O
x'(O) =) :O ®(s)h(s)ds.

By the general solution structure, it yields



x(t) = d(t)c+ (1) [ : ®(s)h(s)ds,

where ¢ is an arbitrary vector constant. If x(t,)=x, is satisfied, c=®7"(t,)x, is
determined. Then

X(1) = DE)D(t,)x, + D(O) | : ®(s)h(s)ds

= (1, 1), +j: @(t, s)h(s)ds. o

6. Summary

e Linear system has global solutions;

e Linear system has superposition principle, which is a key characterization of
linear system no matter of equations;

e Linear system has an important algebra property: Q=R", finite dimension;

e Linear system has general solution structure formulae.

e How to find a fundamental matrix solution ®(t) remains unsolved.

7. Homework

1. Showthat x=A(t)x+h(t) hasonly n+1 linearly independent solutions, where

h(t) is notidentically zeroon 1; A(t) and h(t) are continuouson 1.
2. Show that the IVP
X=AM)x+ f(t,x), x(t,)=X,
and the integral equations
X(D) = PO (t)x + O, @) (5,x(s)) ds

are equivalent. That is, they have the same set of solutions, where ®(t) is a

fundamental matrix solution, A(t) is continuous on | and f(t,x) 1is

continuouson I xR".
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